

River Ice Breakup on Major Alaskan Rivers: Insights into Predictability, and a new Degree - Day Based Model

UAF IARC: Peter Bieniek (PI), Chris Waigl, Uma Bhatt

NWS APRFC: Crane Johnson, Josh Walston, Celine Vanbreukelen

Contributions from: Elizabeth Fisher (UAF/IARC), Brian Brettschneider, Bob Busey (NWS Anchorage), William Straka (NOAA/CIMSS/U Wisconsin)

Presentation to the CICOES All Hands Meeting. June 24, 2025

Photo credit: Tanana River near Salcha, May 2023, contributed to Fresh Eyes on Ice (Tori Brannan)

WATER TO THE PARTY OF THE PARTY

Objective: To enhance breakup guidance for the Alaska - Pacific River Forecast Center (APRFC)

NOAA / NWS funding through CICOES

Generate daily updated predictions of breakup date

Start in early April for <u>37 river</u> <u>locations</u> on priority list (2024)

Based on degree days (DD \geqslant 25°F)

Run operationally starting April 2024
Better understand breakup process

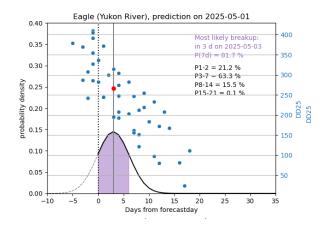
Objective, scientific model choices

Investigation of predictors and factors affecting predictability

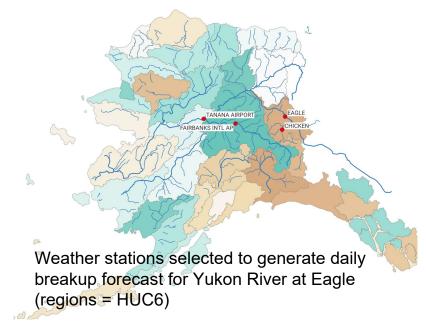
Provide user -friendly products

Probabilities of breakup next days/weeks ← APRFC feedback

Code distributed via GitHub &run by APRFC (starting 2025)


Extend work to the future

- dynamical forecasts
- "early indicators"
- solar radiation
- ice conditions
- breakup sequence along a river
- breakup severity

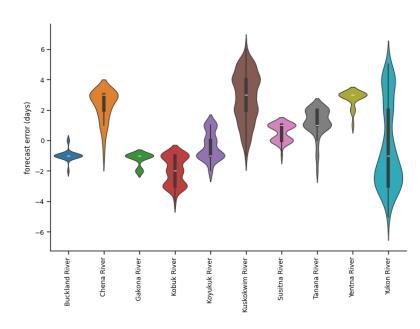

Icons: https://thenounproject.com/

Example: Yukon River at Eagle median breakup date: May 5 trend: 1 day earlier per 15 years

Evaluation of DD25-based model		
	forecast on April 20	actual breakup
2024	2024-05-05	2024-05-03
2025	2025-05-02	2025-05-01

breakup forecast visualization product blue dots: historical time to breakup vs DD25

Selection based on correlation between forecast date and DD25 anomaly throughout the breakup season


How well did the model perform?

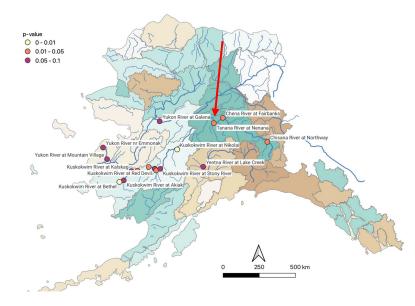
2024 - first operational run:

- Maximum error: 6 days late to 5 days early (April 1 to end of breakup)
- Most forecasts within target
 3 day window

2025 - operational runs by APRFC:

- Added 9 locations
- Errors similar to 2024 (based on Yukon and Kuskokwim Rivers)

2024: forecast errors by river


What else did we learn?

Pre-season predictor analysis (ML):

- Works better on Interior locations than along the coast
- Greater variability in model error than DD25 model, typically underpredicted
- Important predictors: ENSO, EA, EP NP, AO and Ice Thickness
- Ice thickness at Nenana correlates well with breakup date along Kuskokwim river

2025 season:

 Rain-on-snow events during late winter may have accelerated ice melting on the Kuskokwim River

Correlation of ice thickness measured on the Tanana River at Nenana (arrow) with breakup date

Future work:

characterize ice conditions enhance predictors refine model

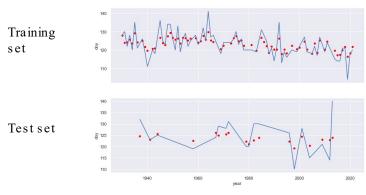
Contact details

Peter Bieniek

pbieniek@alaska.edu

Chris Waigl
cwaigl@alaska.edu

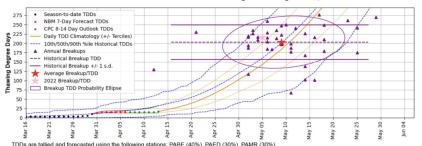
Uma Bhatt
usbhatt@alaska.edu



Extra slides

Nenana Ice Classic: Alaskans like to place bets on the breakup date

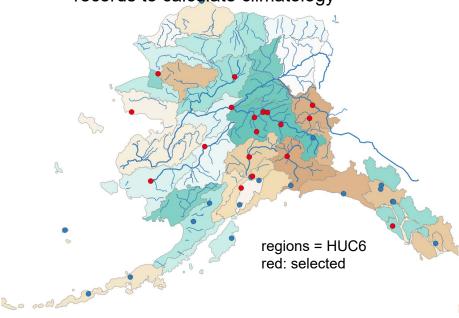
- 2022 Nenana Ice Classic forecasting by Uma Bhatt's Climate Journal Club
- Machine learning based on preseason predictors.
- Accuracy score of ≤ thandays


Betting s lips

The Alaska -Pacific River Forecast Center: breakup guidance

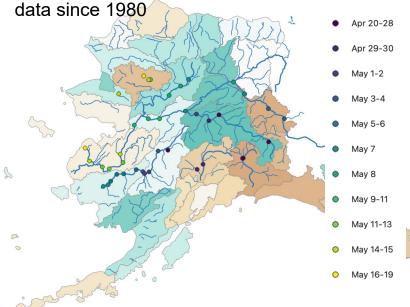
- "Modified Ted Moran model". Run by Brian Brettschneider (image credit)
- Based on thawing degree days (TDD)
 measured at custom-selected weather
 stations
- Assumption: breakup happens when a certain amount of TDD has been accumulated

Kuskokwim River at Bethel Forecast Using Data Through Mar 30, 2022

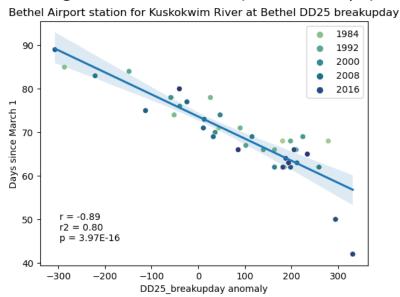


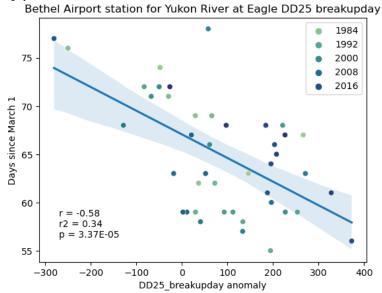
The first time a center line crosses the average TDD breakup threshold is: Climo TDDs (orange) on May 10. This is 1.5 days later than average

Goal: Enhance APRFC breakup guidance Predict date of river breakup at key locations, improving on existing degree -days based model


Weather stations (37)

Requirement: long-term temperature records to calculate climatology


Breakup locations (41)


Priority: Yukon, Tanana, Kuskokwim, Koyukuk & Buckland Rivers. Should have 30 years of

How to select stations for each location?

Weather stations were selected based on the correlation between breakup date at the location and **25** °F degree-day anomaly at the station throughout the breakup season (Apr/May)

